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ABSTRACT  
 
Grid-Optimized Dispersion-Relation-Preserving (GODRP) schemes are used for the computation of category 5, 

problem 1 in 4th CAA Workshop. Tam’s DRP scheme is implemented only on a uniform Cartesian grid while 
practical problems in aeroacoustics are seldom confined to uniform Cartesian geometry, with the associated 
computational grids usually being non-uniform or curvilinear. The GODRP schemes have been developed with grid-
optimization algorithm to make finite difference equations possess the same dispersion relations as the 
corresponding partial differential equations on general geometries. Acoustic/viscous splitting techniques with 
immersed surface dipole model (ISDM) are utilized to solve the sound generation and propagation in viscous, low-
Mach number flows for which direct computation of the aerodynamic noise remains difficult because of the large 
computing resources, the expensive cost and physical/numerical issues inherent in CAA. The ISDM is recently 
developed for the efficient computation of aerodynamic noise generation and propagation in low Mach number 
flows in which dipole source, originating from unsteady pressure fluctuation on a solid surface, is known to be more 
efficient than quadrupole sources. The multi-scale overset grid technique is also applied to resolve the complex 
geometries. Through the illustrative application to the benchmark problem, it will be shown that the current methods 
can broaden the application area of computational aeroacoustic techniques to practical aeroacoustic phenomena, 
enhancing both the speed and accuracy of the computation.  

INTRODUCTION 
 
Aeolian tones from flow over cylinders are relevant to airframe and power plant noise (tubular heat exchanger, 

power transmission lines and chimneys). The purpose of this benchmark problem is to test the ability of a 
CFD/CAA code to accurately and effectively predict sound generation by viscous flows over a blunt body and 
sound propagation through interactions with solid wall and moving flows.  

Numerical dissipation and numerical dispersion are the two primary sources of error associated with 
computational schemes. Recent reviews of computational aeroacoustics by Tam (ref. 1) and Wells et al. (ref. 2) have 
discussed various numerical schemes currently popular in CAA. These include many compact and non-compact 
optimized schemes such as the family of high-order compact differencing schemes (refs. 3 to 5) and DRP scheme 
(ref. 6). They are all centered non-dissipative schemes, a property that is desirable for linear wave propagation. 
However, the DRP scheme has been more favored due to its simple and robust algorithm. The DRP scheme is 
implemented by using a symmetric finite difference stencil on a uniform Cartesian Grids. In this environment, the 
classic DRP schemes minimize numerical dispersion errors while producing essentially no dissipation errors. 
However, practical problems in aeroacoustics are seldom confined to uniform Cartesian geometry, with the 
associated computational grids usually being non-uniform or curvilinear. GODRP schemes (ref. 7) have been 
developed with the grid-optimization algorithm to make the finite difference equations possess the same dispersion 
relations as the corresponding partial differential equations and, at the same time, optimized dissipation 
characteristics at the given grids that are the non-uniform Cartesian or curvilinear grids. In this work, the GODRP 
schemes are utilized to solve this complex geometry problem with curvilinear grids on a guarantee of local and, thus 
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resultant global dispersion-relation-preserving properties. 
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For many industrial problems originating from aerodynamic noise, computational aeroacoustics (CAA) 
technique, reliable and easy to apply, would be of great value to engineers and manufacturers. Recent and 
spectacular achievements in the understanding of aerodynamic noise generation mechanism are based on the CAA 
technique using the direct calculation of the acoustic field by solving the unsteady compressible Navier-Stokes 
equations. Most of them are related to jet noise phenomena, on which the direct numerical simulations (ref. 8) are 
carried out, providing directly an acoustic far field conformable to measurements. However, direct computation of 
the aerodynamic noise radiated by a subsonic flow remains difficult because of the large computing resources, the 
expensive cost and physical/numerical issues (ref. 1) inherent in CAA. These difficulties lead to alternative methods, 
so-called hybrid methods. These methods are based on the concept of variable decomposition in the governing 
equations into a source component and an acoustic one, which leads to two separate sets of equations governing 
viscous flow field and acoustic disturbance field, respectively. This approach is based on the assumption that the 
wave propagation is essentially inviscid in nature and sound perturbations are so small that their contribution to the 
convection velocity of the flow is negligible in most cases. The most important advantage of the decomposition 
method is that algorithms are used that best suited to each solver: traditional CFD algorithms for the viscous flow 
and CAA algorithms for the acoustic perturbations. These separate solvers accommodate the disparate length scales 
(i.e., acoustic and convective) associated with low Mach number aeroacoustics. The convective length scales are 
resolved on a hydrodynamic grid, while the acoustic length scales are resolved on a separate acoustic grid. 
Immersed surface dipole model (ISDM, ref. 9) are recently developed for the efficient computation of aerodynamic 
noise generation and propagation in low Mach number flows in which dipole source, originating from unsteady 
pressure fluctuation on a solid surface, is known to be more efficient than quadrupole sources. In this work, ISDM 
combined with the acoustic/viscous splitting method is utilized for this low-Mach number aeroacoustic problem.  

It is very difficult to construct a single body-fitted mesh for twin cylinders which gives the proper resolution to 
both the near source region and far acoustic field. The complex geometries and large disparate length scales are 
overcome by the use of a multi-scale overset grid technique, where body-fitted meshes are applied only near the 
cylinders and multi-scale Cartesian background mesh is applied elsewhere.  

In Section 2, fundamental formulations for the acoustic disturbance are given. The model of immersed surface 
dipole source terms forcing the disturbance equations is presented. Incompressible Navier-Stokes equations and 
turbulence model for viscous flow are also given.  In Section 3, numerical methods for the acoustic and flow solvers 
are described. General numerical method modeling the surface dipole source terms is also given. In Section 4, 
Aeolian tone from the cross flow past twin-cylinders are investigated with the prescribed methods. Detailed 
discussion on the numerical results is presented. Final section is devoted to the concluding remarks. 

 

FUNDAMENTAL EQUATIONS 
 

The wave generation process is generally believed to be hardly affected by viscosity. We therefore begin with 
the unsteady Euler equations 
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where  denotes the stagnation total energy (e = total energy) and h h2
0 1/ 2e e v≡ + ⋅ 2

0 1/ 2 v≡ + ⋅  represents the 
stagnation total enthalpy ( h = the enthalpy).  The energy conservation equation of (1) can be transformed to an 
equation for the pressure p by using the relation ( / 2 2) /se p p ρ c∂ ∂ = .  
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Where γ designates the ratio of specific heats, and is taken as γ =1.4 for air. This equation (2) will be used instead of 
the energy equation because pressure is a quantity of great interest to acoustic problems.  
The dependent variables can be divided into their base flow components and into their residual components such 
that ,′ρ + ρρ =  p p p′= + and 

i iv v v′= + i
. By inserting these decomposed variables to Eqs. (1) and (2) and then, by 

subtracting the resultant equations from the viscous flow equations satisfied by the base flow components, 
governing equations for the residual components can be obtained. It is evident that different choice of the base flow 
variables leads to the different forms of acoustic governing equations (ref. 10). 
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If the base flow is a steady mean flow, the 2-D governing equations for the residual components are written as the 
following form (ref. 11). 
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where U is the unknown vector, E and F are the linear flux vectors, Enl and Fnl  are the nonlinear flux vectors, and 
the vector H consists of mean flow gradient terms, which are equal to zero when mean flow is uniform. The vector 
S represents possible unsteady sources in the flow.  
 

Assuming isentropic flows, noise generation is provided by source terms in the momentum equation of Eq. (3). 
In present method, the source terms are modeled with the immersed surface dipoles (ref. 9) of magnitude 
corresponding to the hydrodynamic unsteady pressure fluctuations on a solid surface.  
First, let’s introduce a function f(x,t) where f is negative within the control surface, positive within the surrounding 
fluid and f also satisfies the equations |∇f| = 1. Also, define a Heaviside function H(x), by 
 

1 0
H( )

0 0
for x

x
for x

>
=  <

(

.                         (4) 

 
Then H(f) vanishes within the control surface and is equal to unity 
in the region exterior to the surface. Gradient of given fluctuating 
pressure in a solid body can be recast into the following form,  
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Figure 1. Schematic diagram of the procedure 
for the immersed surface dipole modeling Then, in computation domain, 

  ∇ .                              (6) ( ) )()( ffPfHP δ∇=⋅
Then, the vector S is written as  

[ ] [ ]1 2 1 20 0 0 (f ) f (f ) f 0T TS S P P= = δ ∇ δ ∇S                                         (7) 
Data provided by incompressible or compressible simulations can be used to estimate Si. The compressible 
simulations, however, must be used with special caution. In the compressible case, the acoustic field is included in 
the source terms, through density and fluctuating velocity. Although these acoustic components are very small 
compared to hydrodynamic fluctuations, they decay very slowly. Hence, their contribution might have a 
considerable influence on the predicted acoustic pressure magnitudes. The philosophy of covering a body surface 
with immersed surface dipole models (ISDM) is schematically described in Fig. 1.  
 
Present approach is focused on low Mach number flows. Thus the 2-D incompressible Reynolds-Averaged Navier-
Stokes (RANS) equations are used as the governing equations for viscous flow. Eddy viscosity tν  is modeled from 
the low Reynolds number κ– ε turbulence model by Chen et al. (ref. 12).  
 

NUMERICAL METHODS 
 

The Cartesian coordinates employed in equation (3) are inconvenient for complex geometries. The spatial 
derivatives expressed as functions of coordinates (x, y) may be recast as functions of curvilinear coordinates (ξ, η) 
by a general transformation. Then, Eq. (3) in a physical domain is expressed by the coordinate variables in a 
computational domain. 
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All the variables are nondimensionalized with the following scales: D (diameter of a cylinder) for the length scale, 
c∞ for the velocity scale, D/c∞ for the time scale, ρ∞ for the density scale and 2c∞ ∞ρ  for the pressure scale, where c∞ is 
the ambient speed of sound. The 7-point stencil, Grid-Optimized Dispersion-Relation-Preserving (GODRP) Scheme 
of Cheong & Lee (ref. 7) is utilized for the spatial flux derivatives of Eq. (8). Tam & Webb (ref. 6) have shown that 
if a given numerical scheme and the governing equations have the same dispersion relations, the numerical and 
exact solutions will have the same wave propagation characteristics and wave speeds. The GODRP schemes have 
been developed with the grid-optimization algorithm to make the finite difference equations possess the same 
dispersion relations as the corresponding partial differential equations on general geometries. Eq. (8) is discretized 
in space by the GODRP scheme as 
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where a and 
)a  are the l

( , )l i jξ ( ,l i jη
th optimized coefficients of the GODRP finite difference scheme at the (i, j) points 

along the ξ- and η- direction, respectively. The coefficients is chosen by requiring that the numerical wave number 
vectors of the finite difference scheme be a close approximation to the exact wave number of the corresponding 
partial differential equations. For more detailed description on the GODRP scheme, refer to ref. 7. In some cases it 
is necessary to remove spurious numerical oscillations due to non-linearities or mismatches with the boundary 
conditions or the initial conditions. These short waves can be filtered by an artificial selective damping proposed by 
Tam & Shen (ref. 13). Time integration is performed with the low-dissipation and low-dispersion Runge-Kutta 
schemes by Hu et al. (ref. 14) for their minimized dissipation and dispersion errors for wave propagation. Across the 
outflow boundaries of the computational domain, flow of information is associated with acoustic waves, vorticity 
waves and entropy waves. At these boundaries there is only one incoming characteristic, and only the pressure 
perturbation satisfies the convected wave equation. Therefore, B1 operator of Bayliss and Turkel (ref. 15) is also 
used here, but for the pressure perturbation only. The other boundary conditions are formed by the linearized 
momentum equations and the equation of conservation of the acoustic speed, as adapted from Tam and Webb (ref. 
6). For a high-order finite difference scheme the order of the difference equations is higher than that of the Euler 
equations. Thus the zero normal velocity boundary condition is insufficient for defining a unique solution. 
Extraneous numerical conditions must be imposed. Ghost value of pressure (ref. 16) is used as the extraneous 
boundary condition.  
 
The very act of discretization causes many numerical artifacts. Modeling of the delta function in the analytic 
expression for immersed surface dipole sources is required for a discrete numerical simulation. The delta function is 
modeled as 

( )2 2( ) ln 2 exp( ln 2 / )
n

2 2δ πσ σ≅ − ⋅x x ,                                                (10) 
where n ( = 1 or 2 or 3) denotes the dimension of delta function. Both sides of the equations satisfy the following 
space integral equation if n = 2. 
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δ = πσ − ⋅ σ∫ ∫ ∫ ∫x =x                               (11) 

Although Eq. (11) guarantees the conservation of total energy of the delta function, i.e., the acoustic sources, there 
is still difference in the distribution of source. It is evident that, as the value of σ is decreased, modeling Eq. (10) 
becomes more close approximation for the delta function. Combining (7) and (10), immersed surface dipole model 
is numerically expressed as  

( )2 2 2( , ) ( , ) ln 2 exp( ln 2 f ( , ) / ) f ( , )i iS t P t t t= ⋅ πσ − ⋅ σ ∇x x x x                              (12) 

In real applications where a solid body exists, Eq. (12) needs to be slightly changed because the solid body replaces 
the some portion of the immersed surface dipole sources and thus, Eq. (11) can not be satisfied in a fluid region. 
Therefore, correction factor, C is multiplied to Eq. (12) as follows 
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region that the solid body occupies.  
 
The numerical method used for viscous flow simulation is based on the unstructured grid finite volume method, 
which has been described in detail by Kang et al. (ref. 17). The scheme has extended the unstructured grid Navier-
Stokes procedure for incompressible flows developed by Thomadakis et al. (ref. 18) to allow collocated storage of 
all variables. Since Thomadakis et al. used a staggered-grid formulation, pressure is stored at the centroid of a cell 
while velocity components are stored at grid points. However, the scheme has modified this procedure to employ 
collocated storage (non-staggered) in order to obviate the difficulties and disadvantages of implementing a non-
collocated (staggered) mesh within the unstructured methodology. The algebraic pressure equation is derived by 
substituting the discretized momentum equations into the continuity equation (ref. 19). The process of deriving the 
pressure equation is almost the same as one used for a structured grid method. The scheme uses the Quadratic 
Upstream Interpolation for Convective Kinematics (QUICK) scheme for the convective terms and the second order 
Euler backward difference for time derivatives to keep second order accuracy spatially and temporally. All other 
spatial derivatives are approximated by the central difference schemes.  
 

NUMERICAL RESULTS 
 

1. Numerical Results for Viscous Flow Simulations 
 

     
 

Figure 2. The mesh for the viscous flow simulation         Figure 3. Instantaneous, non-dimensional (a) k, 10 levels from 
 0.1 to 1.0 and (b) Pressure contours, 13 levels from –0.8 to 0.4 

The flow calculations are carried out on a mesh with 
approximately 41,103 points in the computational 
domain. Pictures of the mesh and its close-up are shown 
in Fig.2. The mesh for viscous flow simulation consists 
of two types of grids: Inner mesh is the multiply 
connected grid and outer one is the Cartesian grid. 
Initially, random disturbances are imposed on a uniform 
velocity to quickly generate vortex shedding. The 
computational time step is fixed to be ∆t = 0.01/(D/u∞). 
Fig. 3 shows the iso-contours of turbulence kinetic 
energy and pressure at certain time instant. It is evident 
that Anti-phase lift and In-phase drag forces exerted on 
the cylinder surface fluctuate in time due to the periodic 
shedding of vortices. The frequency or period of vortex 
shedding can be estimated by evaluating those of the 
oscillating lift or drag coefficient. Time-dependent 
signals of lift and drag coefficients are presented in Fig. 4, where the lift and drag coefficients. As the computation 

Figure 4. Time dependent signals of Cl and Cd

209NASA/CP—2004-212954



begins with an initial condition that is given by the flow solutions, vortex shedding does not occur for a 
considerable time. However, after the first shedding happens, the flow goes through a transient state to arrive to the 
state of periodic shedding of vortices. Lift and drag coefficients show a sinusoidal variation corresponding to a 
Strouhal number of 0.2 and 0.4, respectively. This value is in good agreement with the experimental measurement 
(ref. 20).  
 

2. Numerical Results of CAA Solver 
 

 
Figure 5. A sequence of simultaneous surface fluctuating pressure (P = p - p0) at (a) one quarter of a cycle, (b) a half cycle, 

(c) three quarters of a cycle, (d) the beginning of a cycle. 

Hydrodynamic unsteady data provided by the 
previously calculated viscous flow simulation 
using incompressible RANS are now used to 
build up the source terms of Eq. (7). They are 
recorded every iteration during one period on 
solid surfaces for dipole sources. Non-
dimensional period Tf of the flow simulation 
equals 4.9 with ∆tf = 0.01, i.e. 490 data points. 
Unsteady hydrodynamic pressures 
corresponding to dipole sources are stored on 
the cylinder surfaces consisting of 101 grid 
points, respectively. Physical time is non-
dimensionalized by D/U∞ in the viscous flow 
simulation and by D/C∞ in the acoustic 
simulation. Different time-scale of the acoustic 
simulation from the viscous flow simulation  

Figure 6. Multi-scale overset grid for the acoustic simulation

      
Figure 7. Instantaneous fluctuating pressure distribution at T = 180 (a) over whole field and (b) at near field 
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leads to the different non-dimension period Ta = 68.08 and numerical time step ∆ta = 0.02, i.e. 3404 data points. 
Furthermore, full computation domain of the computational aeroacoustics covers the far-field reaching to 120D in 
this computation, i.e. acoustic field as well as the near-field, i.e. source field. Thus raw data of the viscous flow are 
transformed into those of the acoustic grid and time by interpolation in space and time. Figures 5 shows the 
fluctuating pressure P on the cylinder surface at one quarter of a cycle, at a half cycle, at three quarters of a cycle 
and at the beginning of a cycle, respectively. It is also observed that the fluctuating pressures show symmetric 
patterns. Fluctuating pressure data are utilized as input data to the immersed surface dipole model. The acoustic 
calculations are performed on a multi-scale overset mesh where body-fitted meshes are applied only near the 
cylinders and multi-scale Cartesian background meshes are applied elsewhere in the domains (see Fig. 6). 
Interpolation algorithm of Bin et al. (ref. 21) is used for the information exchange between the meshes. In this paper, 
acoustic calculations are executed without mean flow, i.e. with only the modeled source terms because of the 
shortage of the allowed paper length. . 
 In Fig. 7, fluctuating pressure field obtained from the 
simulation using the ISDM in ambient condition is plotted at 
non-dimensional time T = 180. As expected, the acoustic 
waves from lift and drag dipoles are mainly propagated in the 
direction normal and parallel to the mean velocity, 
respectively. Fig. 8 shows the pressure waveform along the y-
axis ( y < 0) at various times. These waveforms conform to 
the 2-dimensional wave propagation characteristics, i.e. 
decaying proportional to r-0.5. The directivity patterns of the 
current simulation using the ISDM without mean flow, 
measured at r =10D and r =100D are shown in Fig. 9. The 
amplitudes of the fluctuating pressures from the lift and drag 
dipole sources are comparable for each other at r =10D  while 
acoustic waves from the lift dipoles are more strength that 
those from the drag dipoles at r =100D. Nevertheless, due to 
anti-phase of the lift dipoles of twin cylinders, the amplitude 
of acoustic wave in the direction normal to the mean-flow is 
reduced compared with that from single cylinder.  

Figure 8. pressure distribution along the y-
axis : − numerical results, − − − decay lines 
correspond to a/r0.5 where a is the value of 
pressure at y = 100 in the lines of T = 135. 

  
Figure 9. Directivity patterns of the mean square value of the fluctuating pressure (a)at r = 10D and (b) at r = 100D 

 
CONCLUDING REMARKS 

 
The Grid-Optimized Dispersion-Relation-Preserving (GODRP) schemes are used for the computation of 

category 5, problem 1 in 4th CAA Workshop. The GODRP schemes have been developed with the grid-optimization 
algorithm to make the finite difference equations possess the same dispersion relations as the corresponding partial 
differential equations on general geometries. Acoustic/viscous splitting techniques with immersed surface dipole 
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model (ISDM) are utilized to solve the sound generation and propagation in viscous, low-Mach number flows for 
which direct computation of the aerodynamic noise remains difficult because of the large computing resources, the 
expensive cost and physical/numerical issues inherent in CAA. ISDM is recently developed for the efficient 
computation of aerodynamic noise generation and propagation in low Mach number flows in which dipole source, 
originating from unsteady pressure fluctuation on a solid surface, is known to be more efficient than quadrupole 
sources. The multi-scale overset grids technique is also applied to resolve the complex geometries. Through the 
illustrative application to the benchmark problem, it is shown that the current methods can broaden the application 
area of computational aeroacoustic techniques to practical aeroacoustic phenomena, enhancing both the speed and 
accuracy of the computation.  
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